• Users Online:331
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 

 Table of Contents  
Year : 2019  |  Volume : 8  |  Issue : 3  |  Page : 204-208

Endobronchial ultrasound-guided transbronchial needle aspiration under general anesthesia versus bronchoscopist-directed deep sedation: A retrospective analysis

Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany

Date of Submission04-Oct-2018
Date of Acceptance14-Dec-2018
Date of Web Publication12-Mar-2019

Correspondence Address:
Dr. Tobias Müller
Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, Pauwelsstrasse 30, Aachen 52074
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/eus.eus_65_18

Rights and Permissions

Background: Different sedation strategies are used during endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) for the diagnostic workup of lung cancer including general anesthesia (GA) and moderate sedation. However, no data are available about EBUS-TBNA under deep sedation (DS) with fiberoptic intubation directed by the investigator. Materials and Methods: A retrospective analysis of EBUS-TBNAs under GA (n = 160) or DS (n = 105) was performed. Results: Unadjusted diagnostic yield did not differ significantly between the groups (GA: 42.5% vs. DS: 53.3%P= 0.1018). Similar results were obtained when only patients with a final diagnosis of malignancy were analyzed (GA: 53.6% vs. DS: 61.5%P= 0.2675). Adverse events (AEs) occurred more often under DS (GA: 27.5% vs. DS: 59.1%P< 0.0001) due to more sedation-related problems whereas severe AEs tended to be higher under GA (GA: 7.5% vs. DS: 1.9%P= 0.0523). Conclusion: In summary, our data show that the diagnostic yield and the complication rate of EBUS-TBNA performed under DS are similar compared to GA. Hence, in an appropriate setting, EBUS-TBNA can be performed safely under DS.

Keywords: Bronchoscopy, complications, diagnostic yield, endobronchial ultrasound, sedation

How to cite this article:
Cornelissen CG, Dapper J, Dreher M, Müller T. Endobronchial ultrasound-guided transbronchial needle aspiration under general anesthesia versus bronchoscopist-directed deep sedation: A retrospective analysis. Endosc Ultrasound 2019;8:204-8

How to cite this URL:
Cornelissen CG, Dapper J, Dreher M, Müller T. Endobronchial ultrasound-guided transbronchial needle aspiration under general anesthesia versus bronchoscopist-directed deep sedation: A retrospective analysis. Endosc Ultrasound [serial online] 2019 [cited 2022 Nov 27];8:204-8. Available from: http://www.eusjournal.com/text.asp?2019/8/3/204/254010

  Introduction Top

Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) has become one of the most important tools for the diagnostic workup of lung cancer, as it is an effective technique for the sampling of mediastinal lymph nodes with a low complication rate.[1],[2] To facilitate the procedure and to increase patient tolerance, comfort, and cooperation, EBUS-TBNA is usually performed under sedation or general anesthesia (GA). Although a recent randomized trial demonstrated comparable diagnostic yields of EBUS-TBNA performed under moderate sedation (MS) versus GA, the optimal sedation strategy for EBUS-TBNA is still a matter of debate.[2],[3],[4] Cough suppression obtained by MS is often incomplete resulting in suboptimal conditions which might favor GA although access to GA for bronchoscopy is limited or unavailable in many institutions. A possible alternative could be deep sedation (DS) directed by the investigator with fiberoptic intubation under maintenance of spontaneous breathing as this approach has been found to be well tolerated and safe.[5],[6],[7] Due to the deeper level of sedation, DS might result in better cough suppression compared to MS improving patient tolerance and operating conditions. In addition, the placement of an endotracheal tube allows rapid retracting and advancement of the bronchoscope without removing the needle from the working channel. On the other hand, a deeper level of sedation in the absence of an anesthesiologist might increase the occurrence of complications. Therefore, the aim of this retrospective analysis was to compare diagnostic yield and complication rate of EBUS-TBNA performed under DS or under GA.

  Materials and Methods Top

Data analysis was done in accordance with the Declaration of Helsinki. The Institutional Review Board for Human Studies at our institution confirmed that a formal approval was not required as this retrospective analysis required neither an intervention nor irregularity of privacy or anonymity.

EBUS-TBNAs performed due to suspected malignancy at our institution between January 2013 and December 2016 were included in the analysis. Procedures were done by experienced investigators or under their direct supervision. Standard monitoring included electrocardiogram, oxygen saturation, and noninvasive blood pressure. EBUS-TBNAs were performed with a real-time ultrasound biopsy bronchoscope (BF-UC-160F; Olympus Ltd., Tokyo, Japan) and dedicated 22-gauge needles (NA-201SX; Olympus Ltd.).

Original data were retrieved from an electronic patient record system (Medico, Siemens, Germany). Only bronchoscopies with EBUS-TBNA performed under GA in the attendance of an anesthesiologist or under DS with fiberoptic intubation under maintenance of spontaneous breathing were included in the analysis.

Demographic (age and sex) and epidemiological data (cardiovascular or pulmonary comorbidities) were recorded and collected in a Microsoft Access database (Microsoft, Redmond, USA).[8]

In accordance with previous studies, the diagnostic yield of EBUS-TBNA, defined as the number of individuals in whom EBUS-TBNA provided a specific diagnosis, was determined.[4],[9] Samples of lymph nodes were considered adequate when lymphocytes were present or when rendering a specific diagnosis whereas biopsies of lung masses were only considered as adequate when rendering a specific diagnosis.[4]

Furthermore, additional interventions (e.g., bronchoalveolar lavage) were recorded, and the bronchoscopy report and patient record system were searched for complications occurring during and after the procedure. Complications were categorized into adverse events (AEs) and severe adverse events (SAEs) as previously described.[8],[10] Briefly, SAEs included death within 24 h after bronchoscopy, pneumothorax, major bleeding (defined as necessity for intubation or placement of a bronchus blocker), need for postinterventional ventilation, epileptic seizure, or any event leading to an intensive or intermediate care unit (IMC) admission. AEs included respiratory deteriorations resolving until the end of the procedure, hypotension, a prolonged recovery period, minor bleedings, difficulties with the sedation, for example, due to coughing, or any event judged as a complication of the procedure not fulfilling the definition of an SAE.

Statistical analysis was performed using GraphPad Prism (GraphPad Software, La Jolla, USA). Unless otherwise stated, all data are presented as mean ± standard deviation after testing for normal distribution (Kolmogorov–Smirnov test). A two-group comparison was performed using the unpaired t-test for normally distributed data or the Mann–Whitney test for nonnormally distributed data. The Fisher's exact test was used for categorical data. Statistical significance was defined as P< 0.05.

  Results Top

A total of 295 EBUS-TBNAs for the diagnostic workup of malignant lung diseases were done within the observed period. Procedures under investigator-directed sedation without fiberoptic intubation were excluded from the analysis (n = 30). Of the remaining 265 bronchoscopies, n = 160 were performed under GA and n = 105 were performed under DS with fiberoptic intubation [Figure 1].
Figure 1: Patient flow chart

Click here to view

Patients in the GA and the DS group did not differ significantly in terms of sex, age, size, and the prevalence of cardiovascular or chronic pulmonary diseases [all P> 0.05; [Table 1]. However, patients in the GA group were slightly heavier [Δ −4.718 ± 2.292 kg; 95% confidence interval: −9.231–−0.204 kg; P= 0.0406; [Table 1].
Table 1: Patient characteristics and diagnostic interventions

Click here to view

The number of diagnostic interventions apart from EBUS-TBNA was not different between the two groups [P = 0.3191; [Table 1], and there were no significant differences in the proportion of procedures with bronchoalveolar lavage, endobronchial biopsies, or transbronchial biopsies [all P> 0.05; [Table 1].

The number of sampled targets (lymph nodes or targets) per patient (P = 0.6693) and the number of adequate samples (P = 0.0681) did not differ significantly between the groups. There was a tendency toward a higher diagnostic yield in the DS compared to the GA group (GA: 42.5% vs. DS: 53.3%; P= 0.1018). When only patients with a final diagnosis of malignancy were used to calculate diagnostic yield, there was no significant difference between the DS and the GA group (GA: 53.6% vs. DS: 61.5%; P= 0.2675). Details about the number of samples, diagnostic yield, and final diagnoses are summarized in [Table 2].
Table 2: Number of samples, diagnostic yield of endobronchial ultrasound.guided transbronchial needle aspiration, and final diagnosis

Click here to view

Details of AEs and SAEs are listed in [Table 3]. The proportion of interventions with AEs in the GA group was lower compared to the DS group (GA: 27.5% vs. DS: 59.1%; P< 0.0001). This was due to a higher occurrence of sedation-related problems (GA: 0% vs. DS: 28.5%; P< 0.0001) and transient respiratory deteriorations (GA: 3.8% vs. DS: 13.3%; P= 0.0153) in the DS group. Minor bleedings were common in both groups and not significantly different (P = 0.5471). In contrast, the occurrence of SAEs tended to be higher in the GA compared to the DS group (7.5% vs. 1.9% [P = 0.0523]) driven by more postinterventional intensive care unit/IMC admissions. However, the occurrence of SAEs was low in both groups.
Table 3: Complications

Click here to view

  Discussion Top

This study compared diagnostic yield and the occurrence of complications of EBUS-TBNA performed under GA or under investigator-directed DS including fiberoptic intubation. A similar diagnostic yield was observed in both groups. Several studies have analyzed the diagnostic yield of EBUS-TBNA under MS or GA with conflicting results. While data from an earlier report suggested no difference between the two approaches, a retrospective analysis done by Yarmus et al. demonstrated higher diagnostic yield when the procedure was done under DS in the presence of an anesthesiologist.[3],[11] In contrast, in a recent randomized controlled trial, the diagnostic yield of EBUS-TBNA under GA was not superior compared to MS.[4] Interestingly, all these studies compared MS with GA or DS done by anesthesiologists whereas to the best of our knowledge, no data about DS directed by the bronchoscopist are available so far.

Although it has been speculated previously that the use of GA allows the sampling of more lymph nodes, we did not find differences in the number of sampled targets per procedure which is in accordance with the randomized trial done by Casal et al. and in contrast to the analysis done by Yarmus et al.[3],[4]

Overall, the occurrence of AEs was significantly higher in the DS compared to the GA group, exclusively due to sedation-related problems and respiratory deteriorations. All these complications resolved by the end of the procedure and escalation of care were not necessary. Very similar observations have been made by Casal et al.[4] In contrast, admission to an intensive care unit or IMC after the procedure was required more often in the GA group in accordance with results from a large prospective registry.[2]

This study has several limitations which must be addressed. First, we had to rely on patient records to determine the occurrence of AEs and SAEs. Hence, the complication rate might have been underreported in our study. For the same reason, data about patient comfort or operating conditions during the procedure are lacking. In addition, histological confirmation or radiographic follow-up was not available for all patients with negative EBUS-TBNA which could have also led to bias. Finally, in this single-center study, EBUS-TBNA was mainly performed by experienced investigators or under their direct supervisions. Consecutively, investigator-directed DS might not necessarily be equal to GA in a different setting.

  Conclusion Top

Diagnostic yield and safety of EBUS-TBNA performed under bronchoscopist-directed DS were similar compared to EBUS-TBNA performed under GA. Hence, in an appropriate setting, this approach can be used as an alternative, for example, when GA is not available.

Financial support and sponsorship


Conflicts of interest

There are no conflicts of interest.

  References Top

Ernst A, Anantham D, Eberhardt R, et al. Diagnosis of mediastinal adenopathy-real-time endobronchial ultrasound guided needle aspiration versus mediastinoscopy. J Thorac Oncol 2008;3:577-82.  Back to cited text no. 1
Eapen GA, Shah AM, Lei X, et al. Complications, consequences, and practice patterns of endobronchial ultrasound-guided transbronchial needle aspiration: Results of the AQuIRE registry. Chest 2013;143:1044-53.  Back to cited text no. 2
Yarmus LB, Akulian JA, Gilbert C, et al. Comparison of moderate versus deep sedation for endobronchial ultrasound transbronchial needle aspiration. Ann Am Thorac Soc 2013;10:121-6.  Back to cited text no. 3
Casal RF, Lazarus DR, Kuhl K, et al. Randomized trial of endobronchial ultrasound-guided transbronchial needle aspiration under general anesthesia versus moderate sedation. Am J Respir Crit Care Med 2015;191:796-803.  Back to cited text no. 4
Babiak A, Hetzel J, Krishna G, et al. Transbronchial cryobiopsy: A new tool for lung biopsies. Respiration 2009;78:203-8.  Back to cited text no. 5
Hetzel J, Eberhardt R, Herth FJ, et al. Cryobiopsy increases the diagnostic yield of endobronchial biopsy: A multicentre trial. Eur Respir J 2012;39:685-90.  Back to cited text no. 6
Dreher M, Cornelissen CG, Reddemann MA, et al. Nebulized versus standard local application of lidocaine during flexible bronchoscopy: A randomized controlled trial. Respiration 2016;92:266-73.  Back to cited text no. 7
Müller T, Thümmel K, Cornelissen CG, et al. Analogosedation during flexible bronchoscopy using a combination of midazolam, propofol and fentanyl – A retrospective analysis. PLoS One 2017;12:e0175394.  Back to cited text no. 8
Aswanetmanee P, Limsuwat C, Kabach M, et al. The role of sedation in endobronchial ultrasound-guided transbronchial needle aspiration: Systematic review. Endosc Ultrasound 2016;5:300-6.  Back to cited text no. 9
Grendelmeier P, Tamm M, Pflimlin E, et al. Propofol sedation for flexible bronchoscopy: A randomised, noninferiority trial. Eur Respir J 2014;43:591-601.  Back to cited text no. 10
Herth FJ, Eberhardt R, Vilmann P, et al. Real-time endobronchial ultrasound guided transbronchial needle aspiration for sampling mediastinal lymph nodes. Thorax 2006;61:795-8.  Back to cited text no. 11


  [Figure 1]

  [Table 1], [Table 2], [Table 3]

This article has been cited by
1 Efficacy and safety of EBUS-TBNA under conscious sedation with meperidine and midazolam
Roberto Piro, Eleonora Casalini, Matteo Fontana, Carla Galeone, Patrizia Ruggiero, Sofia Taddei, Giulia Ghidoni, Giulia Patricelli, Nicola Facciolongo
Thoracic Cancer. 2022;
[Pubmed] | [DOI]
2 Efficacy of TBNA needles for EBUS during fiberoptic bronchoscopy?
Ibrahim Güven Cosgun, Ersin Günay, Sule Çilekar, Sibel Günay
Health Sciences Quarterly. 2022; 2(3): 149
[Pubmed] | [DOI]
3 A randomised study of comfort during bronchoscopy comparing conscious sedation and anaesthetist-controlled general anaesthesia, including the utility of bispectral index monitoring
Thomas R. Skinner,Joseph Churton,Timothy P. Edwards,Farzad Bashirzadeh,Christopher Zappala,Justin T. Hundloe,Hau Tan,Andrew J. Pattison,Maryann Todman,Gunter F. Hartel,David I. Fielding
ERJ Open Research. 2021; 7(2): 00895-2020
[Pubmed] | [DOI]
4 Detection of short stature homeobox 2 and RAS-associated domain family 1 subtype A DNA methylation in interventional pulmonology
Jian Wu,Peng Li
World Journal of Clinical Cases. 2021; 9(20): 5391
[Pubmed] | [DOI]
5 Best Evidence Topic: Does the Depth of Sedation Affect Diagnostic Yield of Endobronchial Ultrasound–guided Transbronchial Needle Aspiration?
Alfonso Fiorelli,Alfonso Pecoraro,Annalisa Carlucci,Mario Santini,Pallav L. Shah,Vincent Wentao Fang
Clinical Pulmonary Medicine. 2020; 27(4): 105
[Pubmed] | [DOI]
6 Infraglottic versus supraglottic jet-ventilation for endobronchial ultrasound-guided transbronchial needle aspiration
Maria Anwar,Robert Fritze,Eva Base,Thomas Wasserscheid,Nadja Wolfram,Herbert Koinig,Klaus Hackner,Christopher Lambers,Thomas Schweiger,Peter Errhalt,Mir A. Hoda
European Journal of Anaesthesiology. 2020; 37(11): 999
[Pubmed] | [DOI]
7 Indications, contraindications, and safety aspects of procedural sedation
Maartje van Haperen,Benedikt Preckel,Susanne Eberl
Current Opinion in Anaesthesiology. 2019; 32(6): 769
[Pubmed] | [DOI]


Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

  In this article
   Materials and Me...
   Article Figures
   Article Tables

 Article Access Statistics
    PDF Downloaded187    
    Comments [Add]    
    Cited by others 7    

Recommend this journal